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Abstract

This investigation (subcontract Sci—0201-99 of contract NASW-98007) is concerned
with the large—scale evolution and topology of coronal mass ejections (CMEs) in the
solar wind. During this reporting period (03/01/99 — 02/29/00) we have focused on
several aspects of CME properties, their identification and their evolution in the solar
wind. The work included both analysis of Ulysses and ACE observations as well as fluid
and magnetohydrodynamic simulations. In addition, we analyzed a series of "density
holes" observed in the solar wind, that bear many similarities with CMEs. Finally, this
work was communicated to the scientific community at three meetings and has led to
three scientific papers that are in various stages of review.



Summary of Work

In this section we summarize the main topics of research undertaken during the past year.
This work included: a re—analysis of CMEs observed by Ulysses; an analysis of "density
holes"” by WIND and ACE: an investigation of the relationship between electron density
and temperature within CMEs; and fluid simulations of CME—driven disturbances.

In addition to these main areas of work, our work also included:

(1)A collaboration with Geraint Jones at Imperial College to identify the cause and origin

of Planar magnetic structures in the Ulysses data set. Our working interpretation is that
they represent the "legs" of CMEs.

(2)Mapping in situ solar wind data back to the Sun using fluid and MHD simulations to
localize the origin of CMEs and other transient phenomena.

(3)Regular viewing of Ulysses data set for CME-related events.

(4)Development of an algorithm to automatically detect CME-related events in situ

plasma and magnetic field data sets. So far, we have focused on identifying fast
forward shocks preceding CMEs.

Re—analysis of CMEs observed by Ulysses during it’s en—ecliptic phase of the mission

There is a long standing debate on the most appropriate techniques for analyzing
interplanetary shocks, and in particular, concerning the calculation of the orientation of
shock fronts. Two approaches are most often used; magnetic coplanarity and velocity
coplanarity. Magnetic coplanarity utilizes the upstream and downstream magnetic fields
to calculate the local orientation of the shock. The approach is exact (at least within the
approximations of MHD) and the magnetic field is typically measured at much higher
resolution than plasma parameters. However, fluctuations in the magnetic field
components typically make its determination difficult. Velocity coplanarity, on the other
hand, is only an approximate result, most valid for nearly perpendicular shocks and relies
on velocity measurements, which are typically separated by several minutes.

Based on referee’s comments to a paper we submitted during year 1 of this contract, we
re—analyzed the shocks observed by Ulysses during its in—ecliptic passage to Jupiter
using magnetic coplanarity and compared the results with the previously applied velocity
coplanarity approach. Significant quantitative differences were found between the two
methods. Nevertheless, the conclusions reached in the paper were unchanged; that is,
there is a preponderance of westward and northward tilts to the shock normals and the
shock speed decreases with increasing heliocentric distance.

It is still not clear which approach is most appropriate for interplanetary shocks. If the
goal is to determine other shock parameters (speed, strength, etc.), in addition to the
orientation of the front, then the disparity in resolution is of secondary importance, since
the plasma data must be utilized. We have previously shown that errors in neglecting the
magnetic field can translate into as much as ~20% errors in the determination of the

shock orientation. However, the contribution of waves and turbulence to the magnetic



field and their effect on the coplanarity of the field cannot be easily determined. The
consensus within the space physics community is that magnetic coplanarity is the better
approach, and so we chose to include this method in our revised paper. This comparison,
however, suggests that a detailed quantitative study of these two methods, including the
analysis of realistic synthetic shocks, is necessary. The results of this analysis were
included into a revised version of the manuscript. It was accepted for publication in the
Journal of Geophysical Research in January, 2000 and is included in appendix 1.

Fluid aspects of solar wind disturbances

Near the Sun, Coronal Mass Ejections (CMEs) exhibit a wide range in propagation
speeds, ranging from ~50 km/s to > 2000 km/s. Moreover, half of the CMEs observed
within 5 solar radii by the coronagraph onboard the Solar Maximum Mission over a 7
year period, had speeds less than 300 km/s; a result independent of heliographic latitude.
By comparison, the average speed of the low latitude solar wind at 1 AU is ~440 km/s.
Thus even within the slow solar wind, it is likely that a significant fraction of CMEs are
traveling at speeds, at least initially, lower than the ambient solar wind. We have
previously investigated the acceleration of slow CMEs embedded within a fast solar
wind, indicative of the high-latitude solar wind flow using 1-D gas—dynamic simulations
and comparing with Ulysses observations of high latitude CMEs. We found that pressure
gradients induced by the initial speed differences between the slow CMEs and the faster
ambient solar wind flow generated large accelerations of the CMEs, eventually bringing
them up to the speed of the ambient solar wind flow over scales of 1to 10 AU.

In the present study, we investigated the acceleration of even slower CMEs embedded
within a slow flow indicative of the low-latitude, slow solar wind. We generated an
ambient solar wind flow of approximately 440 km/s, and launched a velocity pulse into
the inner boundary (at 30 solar radii) consisting of a drop in speed of 250 km/s over an
interval of 15 — 20 hours. We considered both square and bell-shaped pulses (which alter
the evolution of the disturbances quantitatively. However, they were used primarily as a
check that the qualitative results are not dependent on the shape of the pulse). Our results
demonstrated that the CMEs are accelerated up to ambient solar winds considerably faster
than their high—latitude counterparts. In fact, for the range of inputs considered, the
CMEs reach ambient solar wind speeds within a fraction of an AU. The rapid formation
and propagation of a compression region at the trailing edge of the CME produces this
acceleration. These results, together with others are summarized in a paper submitted to
the Journal of Geophysical Research, and included in appendix 2.

Relationship between electron density and temperature within CMEs

Osherovich and colleagues have argued that the relationship between electron number
density and temperature within magnetic clouds (and CMEs in general) suggests that the
adiabatic index is less than one. Others, such as J. T. Gosling, have argued that such a
conclusion is not reasonable, since it requires that the temperature within CMEs increases
with increasing distance from the Sun. At the heart of the debate, is the question of
whether one can infer an adiabatic index from a single slice through a CME. For, under



such circumstances, one is not monitoring the variation in a parcel of plasma, but
snapshots of different plasma.

We investigated the relationship between temperature and density using a series of 1-D,
where we simulated CME-like pulses and tracked their evolution through the solar wind.
The simulation region ranged between our inner boundary, at 30 solar radii, and our outer
boundary, at 5 AU. We specified inflow boundary conditions at the inner edge and
allowed the system to relax into an equilibrium solution. Into this solution, we propagated
a pulse mimicking a CME. We varied the duration, speed, density, and/or temperature
variations of the pulse. It is important to realize that the equations strictly assume a
polytropic relationship between density and temperature. Thus if we set the adiabatic
index, gamma = 1.5 in the simulation, then this value holds for all elements of plasma at
all times and at every point within the simulation. We launched several test pulses into
this ambient solution and found that plots of Log(density) versus Log(temperature) at
particular distances can, although not always, display slopes different from 0.5 (the slope
of the points gives (gamma-1), thus gamma = 1.5 would produce a slope of 0.5) within
the pulse. Thus our interpretation is that the slope is not necessarily indicative of the
value of the adiabatic index. The details of these simulations are covered in more detail in

a paper to be submitted to the Journal of Geophysical Research, and included in appendix
3.

Analysis of "density holes”

We analyzed a series of low density intervals in the ACE and WIND plasma data. At
least one of these events (May, 1999) has been associated with significant geomagnetic
activity at Earth and was the topic of several sessions at the Fall AGU meeting in San
Francisco, as well as several popular media reports (also known as “the day the solar
wind disappeared'}. Although the cause of these events remains unclear, we believe they
may represent some type of transient activity akin to coronal mass ejections. Using a 3-D
MHD model, we modeled the structure of the solar corona during the intervals containing
these density holes. Although the model is not yet capable of initiating the types of
perturbations that we believe are responsible for these density holes, it can in principle
provide a picture of the underlying equilibrium structure of the corona during these times.
We mapped the density holes from their interplanetary location back to the solar corona
and found that all events were associated with low density regions in the corona.
Moreover, a current sheet crossing could be identified immediately preceding a low
density region as was observed in some of the events. Thus we believe that the models
provide a reasonable approximation to the equilibrium structure of the solar wind. We
suggest that this configuration must be present in order for a low density transient to be
initiated. This could explain why we also see low density regions in the model that do not
apparently map out to low density events in the solar wind: In addition to this equilibrium
configuration, a transient process is also required to initiate the event, in much the same
way as a CME is launched. The results of this work were presented at the Fall American
Geophysical Union meeting in San Francisco, December, 1999 by Dr. Barbara Thompson
in a talk entitled "The Structure of the Sun During Low-Density Solar Wind Periods".
We plan to write up this research during the next several months and submit to 2 special
issue of Geophysical Research Letters.



Scientific Presentations and Papers

During the past year, the results of this investigation were presented at three scientific
meetings:

(1) An oral summary of the work outlined here was made at the Ulysses Science
Working Team meeting in San Diego in October, 1999 . -

(2) An oral presentation on the simulations performed to investigate the origin of density
holes in the solar wind was presented by Dr. B. Thompson at the Fall AGU meeting, San
Francisco, in December, 1999.

(3) An oral presentation on Ulysses and WIND plasma observations, including the
identification of CMEs, was presented at the Whole Sun Month 1II workshop at the
Goddard Spaceflight Center, Maryland, in January, 2000.”

Three papers were completed, submitted, or accepted based on the work performed in
this investigation:

)] Properties and radial trends of coronal mass gjecta and their associated shocks
observed by Ulysses in the ecliptic plane by Pete Riley, J. T. Gosling, D. 1. McComas,
and R. J. Forsyth. .

(2) Fluid aspects of solar wind disturbances driven by coronal mass ejections by J.T.
Gosling and Pete Riley

(3) On the polytropic relationship between density and temperature within CMEs:
Numerical simulations by Pete Riley, J. T. Gosling, and V. J. Pizzo

These papers are included in the appendices.



APPENDICES



Appendix 1

Properties and radial trends of coronal mass ejecta and their
associated shocks observed by Ulysses in the ecliptic plane

Pete Riley, J. T. Gosling, D.J. McComas, and R. J. Forsyth

Accepted for Publication in the Journal of Geophysical Research, January, 2000



Properties and radial trends of coronal mass ejecta and their
associated shocks observed by Ulysses in the ecliptic plane

Pete Riley
Science Applications International Corporation. San Diego. California

J. T. Gosling and D. J. McComas ‘
Los Alamos National Laboratory, Los Alamos, New Mexico

R. J. Forsyth
The Blackett Laboratory, Imperial College. London, United Kingdom

Short titlee CMES AND THEIR ASSOCIATED SHOCKS



Abstract. In this report. magnetic and plasma measurements are used to
analyze 17 interplanetary coronal mass ejections (CMEs) identified by Ulysses during its
in-ecliptic passage to Jupiter. \We focus on the expansion characteristics of these CMEs
(as inferred from the time rate of change of the velocity profiles through the CNEs)
and the properties of 14 forward shocks unambiguously associated with these CMEs.
We highlight radial trends from 1 to 5.4 AU. Our results indicate that the CT\IES are
generally expanding at all heliocentric distances. \With regard to the shocks preceding
these ejecta, we note the following: (1) there is a clear tendency for the shock speed (in
the upstream frame of reference) to decrease with increasing heliocentric distance as the
CMEs transfer momentum to the ambient solar wind and slow down: (2) 86% of the
shock fronts are oriented in the ecliptic plane such that their normals point westward
(i.e., in the direction of planetary motion about the Sun); (3) 86% of the shocks are
propagating toward the heliographic equator: and (4) no clear trend was found in the

strength of the shocks versus heliocentric distance. These results are interpreted using

simple dynamical arguments and are supported by fluid and MHD simulations.



1. Introduction

The Ulysses spacecraft was launched in October 1990 and during the next sixteen
months traveled outward to Jupiter where it received a gravitational assist necessary
to propel it into a polar orbit about the Sun. During this near—ecliptic phase of the
mission, at least 25 coronal mass ejections (CMEs) were encountered [Phillips et al..
1997).

In this report, we analyze the expansion characteristics of these ejecta and the
properties of the shocks associated with them and attempt to identify radial trends.
Specifically, we focus on the speed profiles within the ejecta which allow us to determine
the expansion properties of the ejecta. and we compute the orientation, speed, and
strength of the 14 fast-mode forward shocks that could be unambiguously associated
with these ejecta.

Several previous studies have analysed specific CME-driven events during the
in—ecliptic phase of the Ulysses mission (e.g., Phillips et al. [1992]; Lanzerotti et al.
[1992]). Other studies have summarized the properties of shocks observed during this
period, but did not distinguish between corotating and C\[E-associated shocks [e.g..
Burton et al., 1992; Balogh et al., 1993]. Several studies have summarized the general
properties of these transient events. Phillips et al. [1997] provided a list of the C\IEs,
including start times, and possible associations with transient shocks. Gonzdlez-Esparza
et al. [1998] analyzed several dynamic properties of these CMEs and, in particular,
found an apparent lack of correlation between the radial widths of the ejecta and
heliocentric distance. The authors interpreted this result as an indication that the ejecta
had established a pressure equilibrium with the surrounding ambient solar wind and
were no longer expanding. In contrast, Gonzdlez-Esparza and Bravo {1998] compared
Ulysses observations with near-Earth IMP observations to infer that the radial width
of the ejecta was larger at Ulysses than at I\P, demonstrating that the ejecta were

expanding as they propagated away from the Sun.



In an earlier study. Gosling et al. [1987] examined the flow properties at the
leading edge of 19 fast CMEs using data from ISEE 3. They found that 17 events
displaved eastward flow doflections across the leading cdge of the ejecta. Thus the
normal vectors to the ejecta fronts were tilted toward the west (i.e.. in the direction of
planetary motion). In contrast. no pattern was found in the meridional flow deflections.
The authors proposed that the observed eastward flow deflections were a consequence
of solar rotation and the Parker spiral pattern that resulted from it. As the ejecta
propagate approximately radially outward from the Sun, westward pressure gradients
acted to refract’ the ejecta fronts so that they became more aligned with the prevailing
Parker spiral.

The data analyzed in this study derives from the Solar Wind Over the Poles of
the Sun (SWOOPS) ion sensor [Bame et al., 1992] and the magnetometer instrument
[Balogh et al., 1992} onboard the Ulysses spacecraft. The plasma moments produced
from the SWOOPS instrument have a typical resolution of 1-8 minutes, while the
magnetic field field components lhave a typical resolution of 1-2 seconds.

This report is structured as follows. In section 2 we discuss the expansion
characteristics of the ejecta. In section 3 we describe the analysis techniques that were
performed on the transient forward shocks and discuss the results of this analysis.

Finally, in section 4 we discuss the results of this study and compare with numerical

models of CME evolution.

2. Plasma Characteristics of the Ejecta

The coronal mass ejections encountered by Ulysses during its outward passage to
Jupiter were identified primarily by the presence of counterstreaming suprathermal
electrons (CSEs) [Phillips et al., 1997]. In addition, these authors required that at least
one other characteristic commonly associated with ejecta (e.g., anomalously low proton

temperature [e.g., Gosling et al.. 1973] or high helium abundance [e.g., Hirshberg et al.,



1972]) also be present. These combined criteria led to the identification of 25 C)MEs.
However. among these events there was considerable variability. Many. for example. did
not display helium abundance enhancements or rotations in the magnetic fiecld. which
are commonly associated with flux ropes. In some cases. the boundaries of the cjecta
were difficult to ascertain.

To mimimize variability due to different trajectories through the CME-driven
disturbances, we restrict our analysis to only those events for which at least two other
plasma and/or magnetic field signatures were present in addition to the signature of
(SEs. By so doing, our initial list of 25 events was reduced to 17. Table 1 summarizes
all 25 CMEs that were observed by Ulysses during its transit to Jupiter. Columns 1 and
2 provide the inferred start dates and times and columns 3 and 4 provide the inferred
stop dates and times. Column 5 indicates whether a fast forward shock was obviously
associated with the ejecta and column 6 indicates whether the CME was included in the
current study.

Figure 1 shows the speed profiles for the 17 CMEs. In each case. speed is plotted
as a function of time in days, as indicated by the legend in the upper left. The first
two CMEs occurred in 1990, the last two occurred in 1992, and the remaining events
occurred in 1991. In each panel. the data begin at the leading edge of the ejecta (left)
and end at the trailing edge (right). Superimposed on each plot is a least squares fit
to the data. A negative slope indicates that the leading edge of the CME is travelling
faster than the trailing edge. Furthermore. if the change between the two boundaries
is relatively monotonic. then the CME is expanding; 71% (12 of 17) of the events
displayved negative gradients, indicating that the majority of the ejecta were expanding.
Presumably the positive gradients in the remaining events are the result of compression
and acceleration of the ejecta by faster solar wind behind the CME.

Using the least squares fits calculated above, we can define an “expansion rate’

for each CME as —dv/dt. We emphasize. however, that since we measure the CME



parameters at a single point in space. this ‘rate’ is in reality a convolution of hoth
temporal and radial effects. Furthermore. —dv/dt is likely to be sensitive to a number
of intrinsic properties of the CMEs. as well as properties of the ambient solar wind
into which the CMEs are propagating. Simulation results (e.g., Gosling et al. [1995D)];
Riley et al. [1997); Riley and Gosling (1998]) illustrate that the relative speed between
the ejecta and the ambient solar wind can have a substantial Impact on the rate of
expansion of CMEs. Thus, in an effort to minimize scatter and amplify any underlying
trends, we further restrict our analysis to those ejecta that were propagating sufficiently
fast to drive a forward shock. Figure 2a shows —du/dt for the 14 events that were
unambiguously associated with shocks (see Table 1). Eleven of the 14 events lie above
zero indicating expansion. The least-squares fit to the points suggests that the rate at
which CMEs expand tends to decrease with increasing heliocentric distance. However,
this fit may be biased by several events observed at ~ 2.3 AU (corresponding to the time
period March-April, 1991, during \\;hich time there was major solar activity [Phillips et
al.. 1992]). Thus at best, these results should be viewed tentatively.

It is straightforward to show that for fast plasma outrunning slower plasma
ballistically (i.e.. such that each parcel of plasma maintains constant speed), a gradient
evolves between them such that dv/dt x 1/R. where R is the heliocentric distance of
the ejecta. In reality, however, dv/dt will decrease faster than 1/R as a rarefaction (or
expansion wave) propagates into the surrounding plasma. On the other hand, if the
expansion of the ejecta is impeded by the surrounding plasma, dv/dt would decrease less
rapidly than 1/R. Thus in Figure 2b we display —Rdv/dt as a function of heliocentric
distance. The large scatter and lack of any obvious trend does not allow us to infer an

expansion rate appreciably different from 1/R.
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3. Shock Analysis

We now turn our attention to an analysis of the transient forward shocks associated
with these ejecta. In particular. there are severa] methods for caleulating the orientatiop
of shock fronts [Abraham-Shrayner and Yun, 1976). The two approaches most oftep
used are magnetic coplanarity and velocity colinearity. Velocity colinearity is only an
approximate result that is most valid when the shock is nearly perpendicular and the
magnetosonic Mach number is high [Abraham-Shmuner and Yun, 1976]. The errors
associated with this method have been discussed in detai] by Riley et al. (1996].
Magnetic coplanarity is. on the other hand. at least theoretically an exact method.
However, while this is true for nearly perpendicular shocks. the technique can become
inaccurate as the angle between the upstream and downstream magnetic field vectors,
B, and B,, becomes small. This is especially true when large fluctuations exist, as
are often observed in solar wind magnetic field measurements. In this study, we use

magnetic coplanarity to determine the orientation of the shock normal, n:

_ . (BixBy) x (B, - By)
= EE x By) X (B, - B,)] (v

Typically, in the analysis of interplanetar}' shocks, windows upstream and
downstream of the shock are chosen and the plasma and magnetic field parameters

are first averaged before calculating the properties of the shocks. However, because of

the azimuchal angle and is positive in the direction of planetary motion about the Sun.

Thus, the radial direction is represented by (0,0). Since the distributions of calculated



unit normals tend to be fairly circular in (8. 0) space for any given shock. we assume
that n = (< 8 >.< ¢ >). Each shock calculation is checked by visually inspecting
the cluster of normals in the (6. 0) plane. This technique has been used previously to
calculate the orientation of interplanetary corotating shocks [Riley et al.. 1996 Gosling
et al., 1997] as well as the orientation of the polar coronal hole boundary [McComas et
al. 1998] using velocity colinearity. |

Once the orientation of the shock front has been determined. we use mass
conservation to determine the speed of the shock in the spacecraft frame of reference:

o = - 3 2
pim D [Vi]

where V; is the proton number density, and v; is the proton velocity in the
spacecraft frame of reference. 3 [...] denotes the difference between the downstream and
upstream quantities and the summation over i runs over p measurements. It is usually
more meaningful to discuss the speed of the shock relative to the upstream solar wind
(3hoer) Which is obtained by subtracting vy -1 from the right hand side of (2).

Following Gosling et al. [1993a]. we define the shock strength. vy, to be the ratio

of the downstream to upstream density minus 1:
=1 (3)

This definition of xss is such that for an infinitely weak shock. \ss — 0. From simple
theoretical considerations we would predict a maximum value, Yss ~ 3 when the ratio of
specific heats, y = 2.

The difference between the resolution of the magnetic field measurements (1-2 s)
and the plasma measurements (4-8 min) makes the choice of upstream and downstream

windows difficult. On one hand, the windows should be sufficiently narrow and close to

the shock front so as to reduce potential contamination by waves and/or discontinuities.



On the other hand. the windows must be sufficiently wide and/or far away from the
shock front so as to include at least one meaningful plasma data point. Our approach
was to analyze each event by hand. choosing the windows so as to: (1) minimize the
scatter in plots of nin (6. ¢) space: and (2) include at least one representative plasma
data point within each window. As a check. we also applied velocity colinearity to larger
windows to determine the shock normal. shock speed, and shock strength. Although we
found quantitative differences between the two approaches, the conclusions reached in
the study were insensitive to the particular technique. A detailed comparison of these.
as well as other techniques will be presented elsewhere.

The 14 shocks used in (his study are listed in Table 2. All were (fast-mode) forward
shocks that preceded C)\Es by anywhere from - hours to 2.9 davs. All events fit the
paradigm of a fast ejecta plowing through a slower ambient solar wind and driving a
shock wave ahead.

Figure 3 presents shock spéed. in the upstream solar wind reference frame. as a
function of heliocentric distance. The numerical values are summarized in Table 2.
Although there is significant scatter. the trend is for shock speed to decrease with
increasing distance from the Sun. The dashed line represents & Jeast squares fit 1o the
points.

Figure 4a presents the shock strengths. as defined by equation (3). There appears to
be no obvious trend with increasing distance from the Sun. Shock strength is, however,
one of the least accurately determined shock parameters. and is likely to be more
sensitive to the initial properties of the individual ejecta (i.e., mass and speed). For
comparison, Figures 4b and Jc display the ratio of downstream to upstream magnetic
feld strength and the nagnetosonic \lach number as calcuated by Balogh et al., [1995].
‘[hese parameters provide an independent verification of a lack of trend in shock
strength with heliocentric distance. It is also noteworthy, and reassuring, that there 1s a

relatively good correlation between po'mt—to-po'mt variations in the parameters, in spite
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of the fact that the windows were chosen independently.

In Figure 5, we have computed the sound speed (c). Alfvén speed (r4), and
magnetosonic speed (v,) immediately upstream of cach shock. Of interest here is the
modest (17 km s™') decrease in the magnetosonic wave speed. which is driven primarily
by a decrease in the Alfvén speed.

Figure 6 displays the orientations of the shock normals. The top panel présents
shock tilts in the meridional plane. Twelve of the 14 events have a positive tile. Thus
86% of the shock normals are tilted northward in the meridional plane. Since Ulysses’
trajectory was displaced southward of the heliographic equator during this period. we
infer that the shock normals were also tilted preferentially toward the heliographic
equator. The bottom panel shows shock orientations in the azimuthal plane. From this.
we deduce that 86% are also tilted toward the west (although the two events that are

tilted toward the east are not the same two events that are tilted toward the south).

4. Summary and Discussion

In this study, we have analyzed the expansion properties of 17 coronal mass
ejections observed by Ulysses during its outward bound trip to Jupiter and computed
the basic shock parameters of 14 transient forward shocks that were associated with
these ejecta.

Our results indicate that CMEs are generally expanding as they propagate away
from the Sun and that the rate of expansion tends to decrease with increasing distance
from the Sun. This is not a surprising result; coronagraph observations indicate that
CMEs near the Sun are expanding. They are inferred to have pressures considerably
higher than the alﬁbient solar wind into which they are propagating. Thus initially, the
high pressure within the ejecta drives a strong expansion, but as the C)\IE propagates
farther from the Sun and evolves toward pressure balance with the ambient solar wind,

the rate of expansion decreases. CME expansion in the solar wind may also be the
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result of other effects [e.g.. Gosling and Riley, 1996]. For example. CMEs travelling
faster than the trailing ambient solar wind. and/or slower than the leading wind expand
as thev are accelerated into the rarefaction caused by the difference in speed between
the CME and the ambient solar wind. Also, expansion may simply be the result of the
leading edge of the CME being ejected faster than the trailing edge. Unfortunately,
the scatter in the calculated expansion rates precludes us from inferring an expénsion
rate significantly different from 1/R. which would be expected based on the evolution of
ballistic trajectories.

Our results may be compared with a study by Gonzdlez-Esparza et al. [1998] who
examined the variation in the radial width of these ejecta (computed by integrating the
solar wind bulk speed between the leading and trailing edges of the ejecta) as a function
of heliocentric distance and concluded that there was no evidence for expansion between
1 and 3 AU. Their method, however. was sensitive to a number of factors, including
the initial intrinsic properties of the CMEs and the trajectory taken by the spacecraft
through the event. On the other hand, our approach provides a more direct measure of
expansion since clearly a CME is expanding if its leading edge is moving faster than its
trailing edge. Our results support the study by Gonzdlez-Esparza and Bravo [1998] who
found that ejecta observed by both Ulysses and IMP displayed larger radial widths at
larger heliocentric distances.

As a fast CME plows through the solar wind travelling at speeds (in the rest frame
of the upstream solar wind plasma) in excess of the fast magnetosonic wave, it drives
a shock ahead of it, providing the necessary mechanism to communicate the presence
of the outward—-moving CME to the solar wind ahead. Momentum coupling. however,
between the ejecta and the slower leading and trailing solar wind acts to slow the ejecta
down. Tn turn, the speed of the shock relative to the upstream solar wind diminishes.
Our results suggest that, on average. the rate of change in velocity with distance is ~ 15

km s—! AU-!. However, for any particular event, the rate of deceleration is likely to be
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sensitive to the initial properties of the ejecta as well as the ambient wind into which it '
is propagating.

Our results suggest that there is no underlying rrend in the strength of shocks
(as defined by the ratio of downstream density to upstream density) preceding a fast
CME as a function of heliocentric distance. This is supported by a comparison of the
variation of Bg/B, and the magnetosonic Mach number with heliocentric distance as
calculated by Balogh et al. [1993). \We suggest that the competing effects of: (1) the
shock slowing down; and (2) the characteristic wave speed of the upstream solar wind
decreasing conspire to produce this result. Both of these effects are evident in the
data. although the decrease in the magnetosonic wave speed upstream of the shocks is
relatively modest.

To explore whether one might expect to observe a systematic variation in shock
strength with distance from the Sun we have utilized one-dimensional (1-D) fluid
simulations of fast transient disturbances. In simulating CIR evolution, 2- and 3-D
effects have been shown to be important in the evolution of shocks bounding interaction
regions [Pizzo, 1981]. However, fast CMEs propagate radially away from the Sun,
suggesting that multi-dimensional effects may not be as significant. This is supported
by 2-D [Riley et al., 1997) and 3-D [Odsteril and Pizzo, 1999] simulations that show
that while the large-scale morphology of ejecta and their associated disturbances are
affected by the dimensionality of the simulation, the essential features of the disturbance
along some radial trajectory are captured by 1-D results [e.g., Gosling et al., 1993].
The algorithm employed is based on an Eulerian finite difference scheme with inflow
boundary conditions specified at the inner boundary (30Rsus) and outflow boundary
conditions specified at the outer boundary (6 AU) [e.g., Riley and Gosling, 1998; Riley
et al., 1997]. The simulation region is filled with typical solar wind values and the
system is allowed to evolve into an equilibrium. A bell-shaped pulse is then launched at

the inner boundary in the form of a speed perturbation while holding the density and
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temperature constant.

-

In Figure 7 we compare two profiles of a pulse mimicking a fast CME-driven
disturbance at 83 (1.75 AU) hours and 250 hours (5 AU) following its launch. Over an
interval of 10 hours. the speed was raised smoothly by 300 km s~' and then lowered
smoothly while holding the remaining plasma parameters constant. The top panel
shows speed, the middle panel shows number density, and the bottom panel shows the
thermal pressure of the fluid as functions of heliocentric distance. The point to note
from Figure 6 is that the strength of the shock at the leading edge of the disturbance
(which, by virtue of the logarithmic scaling, is directly proportional to the change in
density) does not change appreciably between ~ 1.754U and ~ 5AU. In contrast,
the speed of the shock decreased substantially over that distance range. Numerical
experiments such as this one were repeated for a variety of speed profiles. For several
cases, the simulation region was extended to 50 AU to investigate whether trends might
only become apparent over sufficiently large distances. In some cases, the shock strength
increased slightly, while in other cases it decreased. However these variations were never
more than 10-15%. Thus although shocks slow down as the CME-driven disturbances
propagate away from the Sun, the characteristic wave speed of the medium into which
they are propagating also decrcases and the net effect is that the strength of the shock
does not change appreciably over large distances. These results are in qualititative
agreement with 1-D simulations of corotating streams by Hundhausen (1973] who found
that the strength of shocks either remained constant or increased between 1 and 6 AU.
Linearized fluid models [Burton et al., 1992], two-dimensional \MHD simulations
[Odstréil et al., 1996], and three-dimensional hydrodynamic simulations [Odstréil and
Pizzo, 1999a,b] suggest that the large-scale meridional structure of the ejecta and shock
fronts near the eclipic is concave outward. Thus the normal vectors to the fronts are
tilted toward the heliographic equator in both hemispheres. Ulysses was located in the '

southern hemisphere (. S6° heliographic latitude) during this interval and hence the
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northward (i.e.. equatorward) tilts of the shock normals are consistent with this picture.
Slower denser flow equatorward of the observation acts to retard the disturbance more
and thus effectively refracts the shock normal toward the equatorial plane. Thus these
orientations imply that at least part of the ejecta was embedded within the streamer
belt. Another possibility is that the majority of the ejecta were centered south of

the spacecraft. However, this would imply a meridional asymmetry in the launch
characteristics of CMEs at the Sun for a pefiod of ~ 16 months.

The inferred azimuthal orientation of the shock fronts is consistent with an
earlier study by Gosling et al. [1987] of flow deflections at the leading edges of fast
ejecta. Taken together, these two studies suggest that these tilts may be a large scale
phenomenon. Gosling et al. proposed that the azimuthal ejecta tilts may be the result
of one (or a combination) of two effects, both related to the Parker spiral pattern. First,
as the fast CME sweeps up the ambient solar wind magnetic field ahead, the draping of
the field lines takes place asymmetrically, with more draping occurring on the westward
side. The net result is an east-west magnetic pressure gradient that causes the ejecta
to rotate toward the west. Second, inhomogeneities organized about the Parker spiral
could cause the observed azimuthal tilts. In particular, as the fast CME approaches
and overtakes the slower, denser material of a slow stream. it will encounter the slow
stream at its westward edge first and thus be retarded mnore there. Three-dimensional
hydrodynamic simulations of CME evolution in a simple two-stream tilted dipole
model [Odstréil and Pizzo, 1999a,b] support the idea that significant azimuthal tilts can
be generated by the prevailing Parker corotating flow pattern. However, this model
only bredicts the observed westward asymmetry for certain launch characteristics. In
particular, the CME must be launched at the eastward edge of the slow—flow stream.
Under such conditions, as it moves away from the Sun, it interacts with the slow flow
wind as described above. L. contrast. if the CME is launched from the center of {he

slow flow wind, the ejecta can display an eastward tilt. When an ejection is launched to
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the west of the slow wind. there is no slow ambient flow ahead for it to interact with: no _
shock forms and the ejection does not display a significant tilt.

Since inhomogeneities occur in the solar wind on all measurable scales. it is not
clear that the observed tilts are global effects: if the ejecta respond only to small-scale
inhomogeneities, the fronts may be tilted locally westward. but globally remain relatively
untilted. Since individual spacecraft sample only one cut through the shock surface,
accurate shock timing by several spacecraft would be required to differentiate between
‘global’ and ‘local’ shock tilts.

In this paper we have shown that the CMEs observed by Ulysses during its
in-ecliptic passage to Jupiter were generally expanding and that the rate of expansion
decreases with increasing heliocentric distance. Analysis of the shocks preceding these
ejecta suggests that while the speed of the shocks (in the upstream frame of reference)
decreases with increasing distance from the Sun, there is no discernible trend in shock
strength. We suggest that the combination of decreasing shock speed, together with
decreasing wave speed (in the upstream wind) moving away from the Sun is responsible
for this result. We found that 12 out of 14 (86%) shock normals are tilted toward the
equator in the meridional plane. and that 12 out of 14 (86%) shock normals are tilted
toward the west in the azimuthal plane. The observed meridional tilts are consistent
with simulations, suggesting that slow dense flow equatorward of the observations is
responsible for ‘refracting’ the front normals toward the equator. Although several

possible explanations for the azimuthal tilts were discussed. ultimately, their cause

remains unknown.
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Figure 1. Speed profiles for 17 CMEs. The first panel identifies the axes for each
subsequent plot. Panels 2 and 3 (CMEs 1 and 2) show CMEs from 1990, panels 17 and
18 (CMEs 16 and 17) show CMEs from 1992. and the remaining panels show CMEs from
1991. The straight line in each panel is a least squares fit to the data. A negative slope
indicates that the leading edge of the CME is traveling faster than the trailing edge,
indicating that the CME is expanding.

Figure 2. (a) The expansion rate, defined as the negative of the slopes calculated from
Figure 2, is plotted against heliocentric distance for the 14 CMEs that drove shocks.
The dashed line is a least squares fit to the data. (b) Expansion rate multiplied by the
heliocentric distance of the ejecta.

Figure 3. Shock speed relative to the upstream solar wind reference frame (V3hock) VErsus
heliocentric distance for 14 fast-mode shocks.

Figure 4. (a) Shock strength (as inferred from the ratio of downstream density to
upstream density minus one) versus distance from the Sun: (b) Ratio of downstream to
upstream magnetic field strength; and (c) Magnetosonic Mach number.

Figure 5. (a) Sound speed ; (b) Alfvén speed; and (c) Magnetosonic speed immediately
upstream of the shocks.

Figure 6. (a) Meridional tilt of shock normals (6), and (b) azimuthal tilt of shock
normals (¢) versus heliocentric distance.

Figure 7. (a) Solar wind speed, (b) number density, and (c) pressure profiles at 2 times
(83 and 350 hours) following the launch of a pulse introduced at the inner boundary. The

vertical lines mark the boundary of the pulse.



Table 1. CMEs observed by Ulysses during its in-ecliptic outward transit to Jupiter.

Start Date Start Time Stop Date Stop Time Shock? Used in Current Study?
11/29/90 02:53 11/29/90 06:15 no ves
12/01/90 04:25 12/01/90 12:30 no yes
12/11/90 02:25 12/13/90 18:00 ves no
12/26,/90 15:30  12/28/90 11:40 yes 1o
01/11/91 03:25 01/11/91 11:00 no no
01/16/91 16:29 01/19/91 00:10 ves ves
02/27/91 0d:dd 02/27/91 17:00 ves yes
03/05/91 01:00 03/07/91 23:45 yes ves
03/15/91 22:45 03/18/91 13:00 yes yes
03/21/91 12:30 03/21/91 20:45 yes yes
03/24/91 06:31  03/26/91 1140 ves no
03/27/91 09:15 03/29/91 12:00 yes yes
03/29/91 12:00 04/02/91 18:45 no no
04/08/91 16:10 04/11/91 15:05 yes no
05/29/91 15:15 05/31/91 14:30 yes ves
06/04/91 01:35 06/05/91 08:00 yes ves
08,/09/91 17:.00  08/11/91 06:00-18:00  no no
09/10/91 05:30  09/13/91  08:00 yes ves
09/18/91 11:00  09/19/91  11:00 ves ves
10/‘27/91 12:00 10/28/91 02:05 yes ves




Table 1. (continued)

Start Date Start Time Stop Date Stop Time Shock? Used in Current Study?

11/10/91 12:20 11/13/91 12:35 ves no
11/17/91 15:00 11/20/91 14:00 no yes
12/27/91 03:00 12/27/91 20:30 ves ves
01/12/92 11:15 01/13/92 15:30 ves yes

01/21/92 15:50  01/22/92  09:50 no ves




Table 2. Shock parameters.

Year DOY Time 7 o) Ushock  Ushook X R (AU)
90 343 19:17 28.09 -24.18 417.78 122.36 0.76 1.347
90 358 16:00 -27.95 33.75 325.79 43.62 1.40 1.501
91 014 07:55 21.00 40.10 348.02 67.57 0.79 1.728
91 062 23:49 40.58 2.57 469.01 120.42 0.37 2.266
91 078 22:25 1831 28.85 471.84 90.38 (.80 2.438
91 082 15:40 21.31 353.34 328.94 93.87 3.92 2.479
91 097 04:46 36.29 9.45 470.92 116.02 2.88 2.633
91 154 17:06 -3.89 35.09 432.32 71.83 225 3.219
91 251 08:27 43.82 2827 316.64 2893 0.71 4.117
91 261 07:10 35.34 -2.62 377.34 5091 067 4.204
91 299 22:03 4263 2046 361.00 62.19 2.37 4.535
91 313 08:21 1.78 13.68 437.74 4720 241 4.646
91 360 19:45 36.71 40.40 303.42 30.87 1.76 5.033
92 012 04:00 0.71  59.79 313.30 23.11 0.44 5.162
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Fluid Aspects of Solar Wind Disturbances Driven by Coronal Mass Ejections

J. T. Gosling
Los Alamos National Laboratory

Los Alamos, New Mexico

Pete Riley
SAIC
San Diego, California

Abstract. Transient solar wind disturbances are largely associated with coronal mass ejections
(CMEs). Such disturbances often produce large geomagnetic storms, gradual solar energetic
particle events, and Forbush Decreases in the galactic cosmic ray intensity. This paper provides an
overview of fluid aspects important in the evolution of these disturbances as they propagate out
through the heliosphere. The intent is to illustrate the prime dynamic processes that govern
disturbance evolution in the solar wind and to explore how different types of initial conditions,
both within the CMEs themselves and within the ambient wind, affect disturbance evolution. The
overview proceeds from simple one-dimensional simulations of the effects of simple speed
perturbations propagating into a structureless solar wind to three-dimensional simulations that

consider effects associated with compound speed and pressure perturbations propagating into a

spatially structured solar wind.

Introduction

 The most dramatic temporal changes in the coronal expansion occur during coronal mass ejection
(CME) events, duriig which somewhere between 1013 and 1016 g of solar material are injected
into the solar wind [e.g., Crooker, Joselyn, and Feynman, 1997, Gosling, 1999; Hundhausen,
1997]. These events originate in closed magnetic field regions in the solar atmosphere not
previously participating in the solar wind expansion. Ejection speeds within about 5 solar radii of

the Sun’s surface range from less than 50 km s”! in some of the slower events to as high as 2000
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kms-! insome of the faster events [e.g., Gosling etal.. 1976: Hundhausen et al., 1994; Sheeley
etal., 1999]. Many CMEs have outward speeds and internal plasma and magnetic field pressures
that are quite different from that of the ambient wind into which they are injected. Such CMEs
produce transient disturbances in the solar wind that should propagate to the far reaches of the
heliosphere.

Transient disturbances in the solar wind initiated by coronal eruptions have been modeled for
many years, beginning with the self-similar analytical models of Parker [1961; 1963] and Simon
and Axford [1966]. The first numerical computer code (one-dimensional, gas dynamié) to study
disturbance propagation in the solar wind was developed in the late 1960s [Hundhausen and
Gentry, 1969], and a variety of other codes ranging from simple one-dimensional gas dynamic
~ codes through three-dimensional gas dynamic and magnetohydrodynamic codes have been
developed in subsequent years. For the most part, these codes have been applied to the problem
of disturbances driven by fast CMEs propagating into a structureless solar wind. Pizzo [1985]
provided an excellent summary of the level of understanding achieved from such simulation
studies through about 1984, and other reviews have subsequently become available [e.g., Dryer,
1994; Pizzo, 1997; Riley, 1999]. More recently, some attention has been focused on disturbances
generated by slow CMEs [e.g., Gésling and Riley, 1996], on disturbances driven by CMEs
having high internal pressures [e.g., Gosling et al., 1994a; 1994b; 1998; Riley and Gosling,
1998], and disturbance propagation effects associated with a structured ambient solar wind [e.g.,
Odstrcil et al., 1996; 1999a; 1999b; Rilev et al., 1997].

Our purpose here is to provide a brief tutorial on fluid aspects of solar wind disturbances derived
from numerical gas dynamic simulations. For the most part we illustrate disturbance evolution by
propagating idealized perturbations, mimicking different types of CMEs, into a structureless solar
wind using a simple one-dimensional, adiabatic (except at shocks), gas dynamic code. The
simulations begin outside the critical point where the solar wind becomes supersonic and thus do
not address questior'ls of how the CMEs themselves are initiated. Limited to one dimension (the
radial direction), the simulation code predicts too strong an interaction between newly ejected solar
material and the ambient wind because it neglects azimuthal and meridional motions of the plasma
that help relieve pressure stresses. Moreover, the code ignores magnetic forces and thus also

underestimates the speed with which pressure disturbances propagate in the wind. Despite these
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limitations, calculations using this code provide an excellent starting point for illustrating and
understanding how solar wind disturbances associated with CMEs evolve with increasing
heliocentric distance. Our intent is to illustrate (1) the primary fluid processes that determine
disturbance evolution and (2) the effect that initial conditions, both in the ambient wind and within
the CMEs themselves, have on disturbance dynamics. This tutorial builds on and extends to
different types of disturbances a tutorial by Hundhausen [1985], who used a similar one-
dimensional fluid code to illustrate fluid aspects of solar wind disturbances initiated by fast CMEs.
We refer the interested reader to that paper for an informative discussion of simulations of this
nature. In the latter part of this paper we iilustrate some of the additional effects that arise in solar

wind disturbances due to structure in the ambient wind and transverse (to the radial) flows, as

revealed by multidimensional simulations.
Formation and Propagation of Compressions and Rarefactions.

Spatial and temporal gradients in flow speed lead to the formation of compressions and
rarefactions that propagate through and modify the structure of the solar wind. We begin our
discussion of fluid aspects of disturbance evolutionin the solar wind by considering the dynamic
evolution of compressions and rarefactions generated by step-like changes in speed close to the
Sun. In all of the simulations discussed here the flow speed, plasma density, and pressure are
first held constant at the inner boundary of the simulation at 0.14 AU (30 solar radii) for a
sufficiently long time that a steady, highly supersonic solar wind expansion fills the computational
mesh. Different types of simple perturbations are then introduced at the inner boundary. In the
example shown in Figure 1 the initial steady state expansion produced an asymptotic solar wind
speed of about 480 km sl at large heliocentric distances. The figure shows two superimposed
snapshots of the radial evolutionof a disturbance initiated by discontinuously increasing the flow
speéd from 400 to 700 km s~ at the inner boundary while simultaneously holding the density and
pressure constant. A high-pressure compression region, which expands both forward into the
slow wind and backward into the fast wind, quickly forms as the faster plasma overtakes the
siower wind ahead. In this case, the compression is bounded by a strong forward-reverse shock

pair since the plasma flows supersonically into the compression from both sides. The slower
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plasmais compressed and accelerated as it encounters the forward shock and the faster wind is
compressed and decelerated as it encounters the reverse shock. The vertical lines in Figure 1
bracket the last 30 hours of slow wind introduced at the inner boundary. This plasma parcel is
compressed into an ever smaller volume as the forward shock passes through it. When the fast
and slow plasmas have equal densities at the inner boundary, as in this example, momentum
conservation dictates that a step function increase in speed produces nearly equal and opposite
speed changes in the slow and fast wind. (The changes would be precisely equal and opposite
were it not for the overall R~2 fall off in density, where R is heliocentric distance.) Essentially the
same result is obtained if the speed increase at the inner boundary is more gradual than a step
function, but the interaction develops more slowly and the shocks form farther from the Sun.
Figure 2 shows two superimposed snapshots illustrating the radial evolution of a disturbance
initiated at the inner boundary in the opposite manner from that in Figure 1. In this case the steady
state expansion produced an asymptotic flow speed at large distances of about 750 km sl The
disturbance was initiated by changing the speed at the inner boundary from 700 to 400 km s'lina
step function decrease while holding the density and pressure constant there. A region of low
pressure quickly forms at the interface between the two flows as the faster plasma runs away from
the slower. This region of low pressure is commonly called a rarefaction (our preference) or an
expansion wave. The slower plasma behind the interface is accelerated as it encounters the
enhanced outward pressure gradient associated with the rarefaction, while the faster plasma ahead
of the interface is decelerated by the reverse pressure gradient associated with the leading portion
of the rarefaction. It is of interest that the rarefaction in Figure 2 expands much more quickly than
does the compression in Figure | because it is superimposed upon diverging flows. With
increasing heliocentric distance, the overall speed profile flattens as the rarefaction spreads into the
surrounding plasma. Vertical lines in the figure bracket the first 30 hours of slow plasma
introduced at the inner boundary. This parcel of plasma broadens as it moves out from the Sun
and eventually all of the plasma within the parcel is accelerated to a higher speed as it encounters
the low-pressure rarefaction. The greatest acceleration is experienced by the plasma at the leading
edge of the parcel; however, the change in speed of the leading edge of the parcel remains less than
half the original difference in speed between the fast and slow flows because of momentum

conservation in a plasma whose overall density varies as R2. The spherical nature of the overall

4



solar wind expansion is also the reason why the pressure perturbation associated with the
rarefaction is asymmetric about the interface, with the pressure minimum migrating into the plasma

ahead of the parcel as the disturbance progresses out into the heliosphere.

Disturbances Produced by Fast CMEs

Figure 3 shows three superimposed snapshots of the radial evolution of a disturbance initiated
by combining the above types of speed changes in a square wave increase in speed. In this case
speed, density, and pressure were first held steady at the inner boundary at 0.14 AU until a
stationary flow with an asymptotic speed of ~450 km s-! filled the computational mesh. The
disturbance was initiated at the inner boundary by raising the flow speed from 350 to 600 km s-1
and then dropping it back to 350 km s-! 15 hours later. The initial disturbance mimics a
moderately fast CME injected into a considerably slower wind and having an internal pressure
equal to that of the ambient wind. As would be expected from Figure 1, a region of high pressure
develops on the leading edge of the CME in the simulation as it runs into the slower ambient wind
ahead. Because of the large amplitude of the initial speed perturbation, this region of high
pressure is bounded by a forward-reverse shock pair. The propagation of these shocks produces
an acceleration of the ambient wind ahead and a deceleration of the leading portion of the CME.

Simultaneously, a rarefaction develops on the trailing edge of the disturbance as the CME pulls
away from slower trailing solar wind. Pressure gradients associated with this rarefaction produce
a deceleration of the trailing portion of the CME and an acceleration of the trailing wind. After 69
hours the reverse shock and the leading edge of the rarefaction have propagated through one
another in opposite directions, with the reverse shock being near the middle of the CME and the
leading edge of the rarefaction being close to the front edge of the CME. The back edge of the
rarefaction is now well into the trailing wind behind the CME (the back edge of the disturbance at
69 hours lies close to the position of the front edge of the disturbance at 27 hours). After 125
hours the reverse shock has propagated almost to the back edge of the CME, while the leading
edge of the rarefaction has propagated almost up to the forward shock ahead of the CME. The
disturbance thus evolves from an initial, limited square wave perturbation in speed into a more

complex disturbance with an overall speed profile that resembles a double sawtooth. As a result of
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sharing its momentum with both the leading and the trailing ambient wind via the compression and
rarefaction waves, the CME slows considerably as it propagates out into the heliosphere. The
simulation thus explains why CMEs with speeds considerably higher than that of the normal wihd
are only occasionally observed far from the Sun. Only those CMEs with exceptionally large
inertia will not be slowed substantially as they interact with a slower ambient solar wind. Finally.,
although the simulated CME was not expanding at the inner boundary and has a radial width near
1.7 AU that is comparable to its width (0.22 AU) at the inner boundary, it does expand once the
reverse wave has passed through its back edge. When the perturbation at the inner boundary is of
shorter duration than in the present example, the reverse wave passes more quickly through the
CME and expansion begins sooner. The simple simulation shown in Figure 3 is qualitatively
consistent with near-ecliptic observations of many CME-driven solar wind disturbances, although
reverse shocks are only rarely detected in these disturbances except possibly along their central

axes [e.g., Gosling et al., 1988] where the interaction is most nearly one-dimensional in nature.

Disturbances Produced by Slow CMEs

It is instructive to consider the inverse problem of a slow CME injected into a much faster
surrounding solar wind such as might happen at high latitudes. Figure 4 shows two
superimposed snapshots of calculated radial speed and pressure profiles of a solar wind
disturbance produced in our one-dimensional simulation by introducing a very slow pulse into a
faster ambient wind. Starting with the same steady state solution as in Figure 3, the disturbance is
initiated at the inner boundary by dropping the flow speed from 350 to 200 km s"! and then
raising it back up to 350 km slina square wave pulse 15-hours long. Because of the speed
gradient at the leading edge of the CME, a rarefaction quickly forms there that rapidly spreads
forward into the ambient wind and back through the CME. Simultaneously a compression region,
which is bounded by a forward-reverse shock pair, forms on the trailing edge of the CME as the
faster trailing wind overtakes the CME. After41 hours the forward shock and the trailing edge of
the rarefaction have passed through one another in opposite directions such that the forward shock
lies within the heart of the CME while the rarefaction extends nearly to its back edge. After 111

hours the rarefaction extends well behind the CME but still leads the reverse shock, while'the
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forward shock has propagated entirely through the CME. Meanwhile the leading edge of the
rarefaction has run well ahead of both the CME and the forward shock. The combined effect of
the shocks and the rarefaction wave produces a compressed CME that, at | AU, is traveling almost
at the speed of the ambient wind as yet unaffected by the the disturbance. Indeed at this distance
the entire CME is traveling faster than the decelerated ambient wind immediately ahead of the
forward shock. An untrained observer might mistakenly believe that the forward-reverse shock
pair was driven by a CME that initially had a higher speed than that of the ambient wind ahead
rather than a lower speed. , '

The simulation shown in Figure 4 demonstrates that if a slow CME is inserted into a faster solar
wind it is rapidly accelerated up to nearly the speed of the surrounding wind [Gosling and Riley,
1996]. The low momentum of the CME in this case is rapidly shared with an ever larger volume
of the ambient wind owing to the propagation of the compression and rarefaction waves. The
forward shock and the leading rarefaction persist to large distances and thus provide telltale
evidence of the acceleration process. Observations, particularly in the outer heliosphere and at
high heliographic latitudes, provide a few relatively dramatic examples where CMEs have been
accelerated to higher speed because of interactions of this sort, although those observations can not
be explained in terms of simple square wave inputs such as specifically simulated here. Moreover,
most slow CMEs observed in the ecliptic plane do not appear to have been accelerated substantially
by this kind of interaction since they are typically not associated with large rarefactions or shocks
[Gosling, 1994]. Both in situ and coronal [e.g., Sheeley, 1999] observations indicate that
virtually all low-Speed CME:s in the solar wind are accelerated outward by pressure gradients

similar to those that accelerate the normal slow solar wind.
Disturbances Produced by the Overexpansion of CMEs

Coronagraph observations reveal that most CMEs expand considerably as they propagate away
from the Sun, quickly becoming much larger than the Sun that spawned them. For most CMEs
this expansion continues far out into the heliosphere and is readily evident by the fact that the
leading edges of most CMEs observed in the solar wind at any heliocentric distance have higher

speeds than the trailing edges. Since the expansion occurs in all three dimensions, the density and
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temperature of the plasma within a CME typically decrease with increasing heliocentric distance
more rapidly than does that of the normal solar wind.  Thus, at 1 AU CMEs in the solar wind
often are characterized by anomalously low kinetic temperatures [e.g., Gosling etal., 19731987,
Montgomervet d., 1974; Richardson and Cane. 1995], and, atdistances beyond about 3 AU, by
unusually low plasma densities as well [Gosling et al., 1998].

Several processes can contribute to the expansion of a CME. A CME can expand simply because
it is injected into the solar wind with a substantial front-to-rear speed gradient. Another possibility
is that expansion is a CME’s response to a rarefaction wave produced by relative motion between
the CME and the surrounding solar wind, as discussed above. Finally, a CME may expand
because it has a higher internal pressure than that of the surrounding solar wind. The higher
pressure can be a result of a higher density, a higher temperature, a stronger magnetic field, or
some combination thereof. We have used the term “overexpansion” to describe CME events
where a higher internal pressure contributes substantially to the expansion. The relative
importance of these various expansion processes differs from event to event, depending on the
physical character of the CME and on initial conditions within the surrounding solar wind.

Figure 5 show snapshots of solar wind speed and pressure as a function of heliocentric distance
obtained in a simulation of an overe'xpanding CME. In this case the initial steady state boundary
conditions produced a highly supersonic flow with a speed of 750 km s-l at6.0 AU and a density
of 2.5 cm™3 at 1 AU, matching average high-latitude flow conditions observed by Ulysses on the
declining phase of the last solar cycle [e.g., Phillips et al., 1995]. The disturbance was initiated at
the inner boundafy by increasing the density (and hence also the pressure) by a factor of four ina
bell-shaped pulse 10-hours long while simultaneously holding the temperature and speed constant.
This mimics the injection of a dense CME into the heliosphere whose internal pressure is higher
than that of the surrounding wind and whose speed is the same. The temporal duration of the
initial pulse corresponds to a radial width of 0.17 AU at the inner boundary.

Because of its initial high internal pressure, the CME expands as it travels out from the Sun so
that at 3.2 AU it has a radial width of 0.40 AU. The overall disturbance width at this distance is
0.67 AU since the expansion drives a forward compression wave into the ambient wind ahead and
a reverse compression wave into the trailing wind. These pressure waves steepen into relatively

weak shocks by the time they reach 3.2 AU. The expansion also produces a declining front-to-
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rear speed gradient across the CME and causes the pressure within the CME far from the Sun to be
lower than that in the ambient wind surrounding the disturbance. The disturbance thus evolves
from one where high pressure is concentrated within the CME to one where high pressure is
concentrated in the regions immediately downstream from the shocks and where the region interior
to the CME has lower than average pressure. (Disturbance evolution is sirﬁilar to this if the initial
pressure enhancement is instead caused by a higher temperature or a stronger magnetic field,
although differences in detail arise because of the different masses in the initial perturbations.)
Since the background pressure continues to decrease with increasing heliocentric distance in the
simulation, the CME continues to expand as it travels into the far reaches of the heliosphere [Riley
and Gosling, 1998]. This conclusion would be modified if the addition of interstellar pickup ions
into the solar wind contributes substantially to the background pressure at large distances. Insofar
as we are aware, events such as this have not been identified at low heliographic latitudes at any
heliocentric distance. On the other hand, events of this nature constituted a large fraction of the
CME-related events observed at high heliographic latitudes by Ulysses during the decline and near
the minimum of solar cycle 22. In particular, the disturbance produced by the simple simulation in
Figure 5 closely resembles solar wind disturbances observed by Ulysses in February 1994 at 3.5
AU and S54° and in April 1994 at 3.2 AU and S61° [Gosling et al., 1994b].

Disturbances Produced by Compound Perturbations

The simulation results shown in Figures 3-5 illustrate the simplest types of fluid interactions that
occur between CMEs and the surrounding solar wind as they evolve outward from the Sun.
Additional complexities arise when a CME provides both a speed and a pressure perturbation to
the ambient wind. Figure 6 illustrates some of this additional complexity by introducing different
types of perturbations into the same steady state flow (~430 km s at large heliocentric distances).
Thé disturbance on the left was initiated in the same manner as the one in Figure 5, albeitinto
lower speed ambient wind, by increasing the density at the inner boundary by a factor of four ina
bell-shaped puise 10-hours long while holding the temperature and speed constant. The
overexpansion of this pressure pulse produces the speed and pressure profiles shown 59.1 hours

after initiation at the inner boundary. In contrast, the disturbance shown in the middle of Figure 6
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was initiated by increasing the flow speed by a factor of two in a bell-shaped pulse, also 10-hours
long, while holding the density and pressure constant. This disturbance evolves much the same as
the one shown in Figure 3, although differences arise because of the shorter and more gradual
nature of the initial perturbation at the inner boundary when compared to the example in Figure 3.

Finally, the disturbance shown at the right in Figure 6 was initiated by combining these
perturbations in a single pulse. That is, the disturbance was initiated at the inner boundary by
simultaneously increasing both the speed (by a factor of two) and the density (by a factor of four)
in a bell-shaped pulse 10-hours long while holding the temperature constant. This input mimics
the injection of a moderately fast, high pressure CME into a slower ambientsolar wind. We note
that the resulting disturbance near 1 AU includes only a single forward-reverse shock pair.
Primarily because of the greater initial momentum of the CME in this simulation, the forward
shock near 1 AU is considerably stronger than in the example shown in the middle of the figure,
and the CME slows less rapidly as it travels out from the Sun. After 59.1 hours the CME is also
broader than the disturbances in the other panels because both the trailing rarefaction and the initial
over pressure contribute to the expansion. The reverse shock in this simulation is associated with
expansion of the compression region on the leading edge of the CME. It is weakened and retarded
considerably as it encounters the forward wave associated with CME overexpansion. The weaker
forward expansion wave is nearly obliterated by that interaction. On the other hand, the reverse
compression wave associated with overexpansion of the CME never really develops fully in this
case because the CME runs away from the trailing plasma faster than the reverse wave can
effectively expand back into it. Overall, the disturbance bears a greater resemblance to the example
driven by a pure speed pulse (middle panel) than that driven by a pure pressure pulse (left panel).
This simulation thus illustrates the dominant role that relative speed plays in the evolution of most
CME-driven solar wind disturbances.

Flgure 7 provides a somewhat similar comparison for the case of slow CMEs injected into a
much faster ambient solar wind flow (asymptotic speed of 750 km s-! in this case). The
disturbance in the left panel was initiated by dropping the speed from 700 to 400 km s~ 1 atthe
inner boundary and then raising it back up to 700 km slina bell-shaped pulse 30-hours long. In
this case the outer edges of the simulated CME have the same high speed as the ambientw@nd,

while the central portion of the CME has a much lower speed. Because of the more gradual nature
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of the initial perturbation, its greater duration, and the fact that it is superimposed upon a much
faster ambient wind, this disturbance evolves more slowly with heliocentric distance than does the
square-wave example shown in Figure 4 . Nevertheless, the development of the rarefaction on the
leading edge of the disturbance and the compression on the trailing edge of the disturbance are
clear. Moreover, the CME is accelerated in much the same manner as in the Figure 4 example. By
4 AU, all portions of the simulated CME have speeds greater than 650 km s'! as a result of
momentum sharing with the surrounding wind, whereas the CME would have a minimum speed
of ~480 kms™! at large heliocentric distances in the absence of the dynamic interaction. Different
choices for the edges of the CME within the original negative speed pulse would not alter this
conclusion.

The disturbance in the right panel of Figure 7 was initiated at the inner boundary of the simulation
by decreasing the speed in the same manner as in the left panel while simultaneously increasing the
density by a factor of four in a bell-shaped pulse 30-hours long. When compared to the
disturbance in the left panel, it is clear that the effect of adding the density/pressure perturbation is
to broaden both the CME and the overall disturbance, to weaken the forward shock and retard its
advance into the CME, to strengthen the reverse shock propagating back into the trailing ambient
wind, and to lessen the overall acceleration of the CME. All of these effects are consequences of
the added inertia of the initial perturbation and the additional expansion provided by the high initial
internal pressure. Once again it is notable that expansion shocks, such as those produced when
pure pressure signals of this same amplitude are introduced at the inner boundary (see Figure 5
and the left panel of Figure 6), do not form in this example. The reverse wave associated with
expansion of the high-pressure CME is effectively obliterated as it interacts with and retards the
forward shock associated with the compression on the trailing edge of the disturbance, while the
forward expansion wave never really develops because the ambient wind ahead runs away from
the CME faster than the CME can expand into it. The two examples shown in Figure 7 again
illustrate the dominant role that relative speed plays in the evolution of most solar wind
disturbances. The resulting disturbance in the right panel resembles a disturbance observed by

Ulysses at 4.5 AU and S35 in July, 1993 [Gosling and Riley, 1996].
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Disturbance Propagation Effects Associated With Latitudinal Structure in the

Ambient Solar Wind

The examples shown in Figures 1-7 illustrate most of the basic tluid effects underlying CME-
driven disturbance evolution in the solar wind. They also illustrate the sensitivity of that evolution
to initial conditions and provide considerable guidance for interpreting observations. Real solar
wind disturbances are, of course, often more complex than those illustrated by these simple
simulations. Because of spatial structure within the ambient solar wind and within the CMEs
themselves, as well as the possibility of transverse flows, we can not hope to replicate all the
details of these disturbances with one-dimensional simulations. Additional effects arise when one
considers spatial inhomogenieties and allows for transverse flow in the simulations. Figure 8
provides an example of some of these effects [Rilev et al., 1997]. The figure shows the result of a
two-dimensional fluid simulation of a CME propagating into a solar wind characterized by dense,
slow radial flow from the equator to a latitude of 20° and by tenuous, fast radial flow above 20°.
At large heliocentric distances the steady state flow prior to initiation of the disturbance was ~450
km s~ at low latitudes and ~750 km s| at high latitudes. This approximates the average
latitudinal structure observed by Ulysses during its first polar orbit about the Sun on the declining
phase of solar cycle 22 [e.g., Phillips et al., 1993]. It represents the limiting case of a three-
dimensional model in which the ambient flow close to the Sun is structured into a band of low-
speed wind above the magnetic equator and a considerably higher-speed wind at higher magnetic
latitudes. In this case the tilt of the solar magnetic dipole relative to the rotation axis of the Sun is
exactly zero so that there is no stream structure at low or high heliographic latitudes and thus
corotating interaction regions (CIRs) do not form.

The disturbance shown in Figure 8 was initiated at 0.14 AU by introducing a fast, hot and dense
bell-shaped pulse of 10-hour duration into the simulation. The pulse extended from the equator to
45'; latitude, extend'ing well across the boundary between the low and high-latitude flows. The
speed of the plasma in the puise at all latitudes was identical to that in the ambient wind at high
latitudes and the maximum gas pressure within the pulse was 6 times greater than that which
prevailed at both low and high latitudes in the ambient wind. The simulation thus mimics injection

into the solar wind of a CME that initially has a speed equal to that of the ambient wind at high
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latitudes, a speed considerably faster than the ambient wind at low latitudes, and a higher intemal
pressure than the ambient wind at all latitudes. The upper portion of Figure 8 shows snapshots of
the radial and meridional flows and the pressure 6.9 days after initiation of the disturbance at the
inner boundary, while the bottom portion shows differences between the disturbance and steady
state solutions of these parameters. The solid line in all panels outlines the material introduced
within the pulse at the inner boundary and thus outlines the pseudo-CME in the simulation. The
following items are of interest here:

L. The disturbance has evolved in a completely different fashion within the low and high-latitude
regions. At low latitudes, evolution is dominated by the relative speed between the CME and the
slower ambient wind ahead, as in the one-dimensional example in the right panel of Figure 6. As
in that case, the low-latitude portion of the disturbance is fronted by a strong forward shock, while
the reverse wave associated with the interaction is almostinvisible. Athigh latitudes, disturbance
evolution is driven primarily by the overexpansion of the coasting CME, as in Figure 5, and a
relatively weak forward-reverse shock pair bounds the disturbance.

2. The CME has essentially separated into two pieces. The radial separation is caused by the
strong velocity shear between the slow and fast ambient solar wind. The latitudinal separation s a
result of the rarefactions that develop in the two different pieces of the CME. Pressure gradients
associated with those rarefactions drive meridional flows across the original interface between the
low and high-speed flows; those flows produce the latitudinal separation. The rarefaction at low
latitudes is a result of the CME running away from the slower ambient behind (as in Figure 3 and
in the middle and right panels in Figure 6). At high latitudes the rarefaction is the result of the
overexpansion of the CME (as in Figure 5 and the left panel in Figure 6).

3. After 6.9 days the CME, originally confined to latitudes below 45°, extends poleward to 63°
and the associated forward and reverse shocks have reached the pole. Most of this latitudinal
expansion occurs close to the Sun where, because of the diverging geometry, latitudinal distances
are -relatively small. This poleward expansion is not yet obvious in high-latitude observations
obtained to date.

4. The high-pressure region at the front of the low-latitude portion of the disturbance extends
poleward across the slow/fast interface by ~10°. This extension is a result of the transverse

expansion of the compression region and is associated with the strongest meridional flow
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velocities (30 km s~ !y within the disturbance.

The disturbance profiles produced in this two-dimensional simulation at high and low latitudes
are similar to disturbance profiles observed in the ecliptic plane at | AU by IMP 8 and at S54° and
3.5 AU by Ulysses during a CME-driven disturbance in February 1994 [Gosling et al.. 1995].
Although the two-dimensional simulation introduces additional complexities and provides a global
perspective not possible in the one-dimensional simulations, the basic nature of the disturbances at

high and low latitudes is correctly inferred from the simpler one-dimensional simulations.
Disturbance Propagation in a More Realistic Three-Dimensional Geometry

The geometry of the ambient solar wind flow close to the Sun is probably never as simple as
assumed in Figure 8. Stream structure and CIRs always are present to some degree in the solar
wind at low heliographic latitudes. A more realistic, but still highly idealized. geometry is that
which has been used to simulate three-dimensional aspects of CIRs [Pizzo, 1991; 1994; Pizzo and
Gosling, 1994]. In those simulations it is assumed that a uniform band of slow, dense wind
encircles the Sun at low heliographic latitudes, while uniform regions of fast, tenuous wind
emanate from higher latitudes. Faét and slow flow regimes are separated by a relatively sharp
transition and the slow flow band, centered on the solar fnagnetic equator, is tilted relative to the
heliographic equator. Typical tilts range from about 10° to 30°, reflecting observed tilts of the
solar magnetic dipole relative to the rotation axis of the Sun. Gas dynamic and MHD simulations
using this type of geometry provide a credible approximation to the gross latitudinal structure of
the solar wind observed by Ulysses on the declining phase of the most recent solar activity cycle
[e.g., Phillips et al., 1995], and successfully reproduce the observed three-dimensional structure
of CIRs over a wide range of latitudes out to distances of at least 5 AU [Pizzo and Gosling, 1994].

In the three-dimensional simulation used to produce Figure 9 [Odstrcil and Pizzo, 1999a], the
slow flow band was 30° wide and was centered on the magnetic equator which, in turn, was tilted
20° relative to the heliographic equator. Initial conditions at the inner boundary at 0.14 AU were
chosen to be 600 (300) km 51, 125 (500) cm™3 and 2 (0.5) x 10% K in the fast (slow) wind.
These produced an ambient background state with speed 718 (359) km 5‘1, density 2.08 (8.45)
cm'3, and temperature 1.30 (0.33) x 109 K in the fast (slow) wind at 1 AU, which are close to
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typical observed values..

The CME was introduced at the inner boundary as a time-dependent pulse situated within the
slow flow, centered at the point where the magnetic equator crosses the heliographic equator, with
a cone half angle of 157 (see Figure 9). The pulse ramps were each | hour long and the pulse
duration was 12 hours. Maximum values of radial velocity, density, and temperature within the
pulse were 600 km 5”1, 1000 cm™3, and 2 x 109 K, respectively. Thus, the radial velocity and
temperature within the CME-like pulse were equal to the fast wind value and the pressure was 8
times greater than that in both the high and the low-speed ambient wind. Overall the initial pulse
associated with the CME was shaped roughly like a prolate spheroid, with the long axis in the
radial direction.

Figure 9 shows azimuthal slices of the resulting solar wind disturbance at four different polar
angles 12 days afterits launch from the inner boundary; Figure 10 shows a single meridional slice
passing through the central longitude of the original perturbation obtained 10 days after launch.
Originally confined to a 15° cone half angle, the CME has broadened by more than 30° in each
transverse dimension. This spreading is a consequence of the high initial pressure within the CME
as well as the additional pressure enhancement produced as the fast CME overtakes slower wind.
The combined effects of radial flow collision, lateral material expansion, and interaction with a
highly structured background solar wind velocity and density structure produce the bent and
twisted pancake-like CME structure shown in Figures 9 and 10. The CME is retarded most near
the equator where the CME plows directly into the slow, dense flow. In contrast, the high-latitude
extensions of the CME are rapidly pulled outward by the fast flow there. Such effects are
responsible for producing both the bowed-out appearance of the CME in Figure 10 as well as the
systematic shift with latitude of the orientation of the CME in Figure 9. The CME is most
compressed (thinnest) just north of the equator where it is swept into the CIR; the CME is most
extended in the south where it is relatively free to expand in the high-speed flow there.

Béyond several AU, the steady state solution into which this CME was propagated contained
corotating shocks aligned roughly along the nominal Archimedean spiral direction in the azimuthal
direction but tilted in the meridional plane. At the central longitude of the CME, those shocks do
not extend far below the equator (see, for example, Figures 1 and 2 in Pizzo and Gosling [199'4]).

The overall shock structure is significantly modified by the CME-driven disturbance. The shocks
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can be discerned in Figures 9 and 10 as regions where the density contours are most closely
spaced. Shock strengths are greatest, and the entire structure narrowest. where the forward and
reverse shocks, driven by the relative motion and expansion of the CME, merge with the CIR
shocks into a single shock pair north of the equator. At those latitudes the CME becomes
entrained within the CIR. At southern latitudes a relatively weak forward shock - the result of
both relative motion between the CME and the ambient wind and the expansion of the CME -
stands well off in front of the CME. At the highest southern latitudes of the CME the front does
not appear to be a shock. A relatively weak reverse shock. the result of overexpaﬁsion of the
CME, trails most of the southern portion of the CME.

This three-dimensional simulation, although highly idealized. graphically demonstrates the
complexities that arise in a CME-driven disturbance propagating into a spatially structured solar
wind (see also Odstrcil and Pizzo [1999b]). The CME becomes distorted in all dimensions and the
shock strengths and stand-off distances (relative to the CME) are strong functions of position.
Even when the CME itself is spatially uniform close to the Sun, the disturbance the CME produces

in the solar wind is a strong function of latitude and longitude as well as heliocentric distance.

Concluding Comments

Our goal in this paper has been to provide a simple physical description of fluid aspects of the
evolution of CME-driven disturbances in the solar wind. This evolution becomes ever more
complex as one proceeds from idealized speed perturbations introduced into a structureless solar
wind using a simple one-dimensional fluid code to compound pressure and speed perturbations
introduced into a solar wind that is highly structured in all three dimensions using a three-
dimensional fluid code. Although the two and three-dimensional simulations provide unique
global perspectives of disturbance evolution and include effects that simply can not be explored
with the one-dimensional simulations, most of the basic physical processes and effects in both
types of simulations are most simply understood in the context of the one-dimensional
simulations.

We note that even the three-dimensional simulations are highly idealized approximations to what

nature actually provides. The ambient solar wind nearly always contains detailed structure beyond
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what is predicted by the tilted slow-wind band model. Not only is the flow usually spatially and
temporally variable within both the slow-wind band and the high-speed wind, but also the slow-
wind band almost always is warped rather than planar. The structure of the ambient solar wind
can also be significantly modified by previous CME-driven disturbances, an etfect that is more
common near solar activity maximum than near solar activity minimum. In addition, it is unlikely
that real CMEs provide initial perturbations that are as simple and spatially uniform as has been
assumed in the simulations to date.

The inner boundary for all of the simulations discussed here lies well outside the critical point
where the solar wind flow becomes supersonic. This choice simplifies the model calculations at
the price that we learn little about how CMEs are initiated or evolve during the first 1/7th of their
~ journey outto 1 AU. It also ensures that pressure perturbations produced in the wind do not
propagate back to the inner boundary, since all pressure perturbations are superimposed on a
highly supersonic outflow. Thus, for example, the reverse compression waves associated with
over-expanding CMEs are convected outward with the rest of the wind, which would not be the
case were the simulations initiated inside the critical point. We have suggested previously
[Gosling et al. 1994b] that the reverse waves associated with overexpansion may actually be
present in the solar wind only in CMEs that have supersonic speeds close to the solar surface.
Such a class of supersonic CME events is clearly present in coronagraph observations le.g.,
Sheeley, 1999]. For CMEs that have subsonic speeds close to the Sun, the reverse waves
associated with overexpansion should propagate down to the lower atmosphere. We have
previously suggeéted [Gosling, 1994] that, as it interacts with the lower atmosphere, such a
reverse wave might produce a chromospheric effect known as a Moreton wave or, equivalently, a
bright expanding ring in the lower corona [e.g., Thompson et al., 1998].

Finally, for simplicity we have explicitly ignored effects of the magnetic field in all of our
discussion despite the fact that CMEs are inherently a magnetic phenomenon. Moreover, itis the
magnetic field that makes the solar wind behave like a fluid on all but the smallest scales [e.g.,
Parker, 1999]. It is expected, however, that the magnetic field plays a relatively minor role in
solar wind dynamics because the momentum and energy density associated with the magnetic field
usually are far less than that associated with the bulk flow of the plasma. And, as we have noted,

in most CME-driven disturbances relative motion is the primary factor governing disturbance
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evolution in the solar wind. Nevertheless. (1) the magnetic field increases the characteristic speed

with which small amplitude pressure signals propagate in the wind. and (2) the magnetic pressure

typically is comparable to. and can be greater than. the thermal pressure of the plasma, depending

on the plasma beta (the ratio of plasma to magnetic field pressure). This indicates. for example,

that solar wind disturbances spread more rapidly than is suggested by the fluid simulations. and

overexpanding CMEs may actually be a result more of an enhanced magnetic pressure than an

enhanced thermal pressure. We would not expect that either of these effects would seriously -
modify the conclusions drawn from the fluid simulations. although they would affect detailed

comparisons of simulation results with observations.

In closing, we wish to emphasize that. even though the magnetic field usually plays a secondary
role in disturbance evolution, it is a vital part of any CME-driven disturbance. Field line topology
provides important clues for understanding CME origins in processes close to the Sun, and the
strength and orientation of the field are crucial elements of a disturbance’s interaction with the
Earth’s magnetosphere. Both the strength and orientation of the field are strongly atfected by the
evolution of CME-driven disturbances. The ambient field must drape about a fast CME as the
CME pushes its way outward into the heliosphere, and the both the ambient field and that within
the CME are enhanced as the plasrﬁa is compressed. Thus, a model that includes both tluid and
magnetic field effects ultimately is needed for predicting space weather effects of these

disturbances.
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Figure Captions

Figure 1. Simulated solar wind speed and pressure versus heliocentric distance 83 and 250
hours after introducing a 300 km s°! step function increase in speed at 0.14 AU. Vertical lines
bound the last 30 hours of slow wind introduced into the simulation prior to the speed increase.

Adapted from Gosling and Riley [1996].

Figure 2. Simulated solar wind speed and pressure versus heliocentric distance 83 and 250
hours after introducing a 300 km sl step function decrease in speed at 0.14 AU. Vertical lines

bound the first 30 hours of slow wind introduced at the inner boundary. Adapted from Gosling
and Riley [1996].

Figure 3. Simulated solar wind speed and pressure versus heliocentric distance for a solar wind
disturbance initiated by a 15-hour lopg, 250 km s°1, square wave increase in speed at 0.14 AU.
The snapshots shown were obtained 27, 69 and 125 hours after onset of the perturbation. Vertical
lines bound the material introduced at higher speed at the inner boundary, and thus mark the CME
in the simulation. Adapted from Gosling {1999)].

Figure 4. Simulated solar wind speed and pressure versus heliocentric distance for a solar wind
disturbance initiated by a 15-hour long, 150 km sl square wave decrease in speed at 0.14 AU.
The snapshots shown were obtained 41 and 111 hours after onset of the perturbation. Vertical
lines bound the material introduced at lower speed at the inner boundary, and thus mark the CME

in the simulation. Adapted from Gosling [1999].

Figure 5. Simulated solar wind speed and pressure versus heliocentric distance for a solar wind
disturbance initiated by a 10-hour long, factor of four, bell-shaped increase in density at0.14 AU.
The snapshots shown were obtained 55 and 194 hours after onset of the perturbation. Vertical
lines bound the material within the density pulse, and thus identify the CME in the simulation.

Adapted from Gosling et al. [1998].
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Figure 6. Solar wind speed and pressure versus heliocentric distance for three simulated
disturbances, obtained 59.1 hours after initiationat 0.14 AU. In the left, center, and right panels
respectively the disturbances were initiated by increasing the density by a factor of four, by
increasing the speed by a factor of two, and by increasing both the density (by a factor of four)
and the speed (by a factor of two) in bell-shaped pulses 10-hours long. Vertical lines bracket the

plasma originally within the bell-shaped pulses at the inner boundary and thus identify the CMEs
in the simulation. Adapted from Gosling et al. [1995].

Figure 7. Solar wind speed and pressure versus heliocentric distance for two simulated
disturbances, obtained 83 and 250 hours after initiationat 0.14 AU. In the left and right panels
~ respectively, the disturbances were initiated by decreasing the speed by 300 km s-! and by
simultaneously decreasing the speed by 300 km s-| and increasing the density by : factor of four
in bell-shaped pulses 30-hours long. Vertical lines bracket the plasma originally within the bell-
shaped pulses at the inner boundary and thus identify the CMEs in the simulations. Adapted from
Gosling and Riley [1996].

Figure 8. Upper panels: Color-codcd, meridional plots of simulated radial velocity, meridional
velocity, and pressure 6.9 days after the initiation of the disturbance at 0.14 AU. The disturbance
was initiated in this two-dimensional simulation as a 10-hour long, bell-shaped pulse with a speed
equal to that of the ambient, high-latitude wind and a maximum pressure 6 times greater than that
in the ambient solar wind at both high and low latitudes. Atthe inner boundary the pulse extended
from the equator up to a latitude of 45°. The solid line in each panel marks the boundary of the
material originally within the bell-shaped pulse and thus identifies the CME in the simulation.
Lower panels: Same as in the upper panels except that the difference between the solution at 6.9

days and the steady state solution is shown. Adapted from Riley et al. [1997].

Figure 9. Left: Schematic illustrating the geometry of the three-dimensional simulation at 0.14
AU. A 30° band of slow, dense wind, tilted at 20° to the heliographic equator encircles the Sun.
It is surrounded on eitherside by fast, tenuous wind extending up to the polar regions of the Sun.

The initial perturbation filled a 15° cone centered in the low-speed wind at the heliographic
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equator. Plasma within the pulse, which lasted for 14 hours, had the same speed as the high-
latitude wind and an intemnal pressure eight times greater than that within the ambient wind at both
high and low latitudes. Right: Longitudinal slices of the disturbance at four different polar angles
12 days afterits launch from 0.14 AU. The slices extend from 2.5 to S AU and cover azimuths
from 50° to 130°. The initial disturbance was centered at an azimuth of 90°. The radial velocity is
indicated by the gray scale and the density is indicated by contours. The injected material density,
representing the CME, is normalized to | AU values and is color-coded. Adapted from Odstrcil
and Pizzo [1999a].

Figure 10. Similarto Figure 9 except that this shows a meridional cut at the central longitude of
the disturbance obtained 10 days after the initial perturbation at 0.14 AU. The cutextends from [
to 5 AU and covers polar angles from 30° to 150°. Adapted from Odstreil and Pizzo [1999b].
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Abstract. There is currently debate concerning the interpretation of the negative
correlation that is often observed between electron density and electron temperature
within CMEs at a fixed point in space. If on one hand, these single spacecraft
observations provide direct measures of the polytropic properties of the plasma, then they
imply that the polytropic index for the electrons, 7. is often less than 1. Moreover, since
the electrons carry the bulk of the pressure (via their significantly higher temperature)
this further implies that the dynamics of CME evolution are dominated by an effective
polytropic index, Y.+ < 1. On the other hand, y < | implies that as the ejecta propagate
away from the Sun and expand, they also heat up; a result clearly at odds with in situ
observations. In contrast, many studies have shown that the quiescent solar wind exhibits
a positive correlation between electron density and temperature, suggesting that Y. > 1. In
this study, we utilize a one—dimensional, single—fluid model mimicking the evolution of
CMEs and their associated disturbances in the solar wind to address the correct
interpretation of the relationship between electron density and temperature within CMEs
at fixed points in space. Although we impose a polytropic relationship (with y = constant)
throughout our simulations, we demonstrate that, at fixed locations, a variety of types of
correlation between density and temperature can be observed. Furthermore, we show that
the presence of uncorrelated fine—scale structure is all that is required to produce the
types of negative correlation that are often seen within CMEs. Consequently, we
conclude that a negative correlation between electron density and temperature, observed
at a single point in space, cannot be used to infer the value of y. Instead, we suggest that
fine—scale fluctuations in pressure together with the plasma tendency to achieve pressure

balance with its surroundings are responsible for the observed profiles.
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1. Introduction

A number of studies have demonstrated that a negative correlation often exists between |
electron density (n.) and temperature (7.) within magnetic clouds [e.g., Osherovich et al.,
1993a,b], and more generally, coronal mass ejections (CMEs) [e.g., Hammond et al.,
1996]. In particular, Osherovich et al. [1993a] found that, on average, the slope of
logarithmic plot of T, versus n. equaled \1/2 within magnetic clouds. These resulté are in
contrast to studies of the quiescent solar wind at different heliocentric distances for which

a positive correlation is found [e.g., Sittler and Scudder, 1980; Pilipp et al., 1990;
Phillips et al., 1993; Phillips et al., 1995].

The relationship between temperature and density in a plasma has important ramifications
for hydrodynamic and MHD models of space plasmas, and particularly models of CME
evolution in the solar wind, since most models do not explicitly include energy
conservation in their description of the fluid [e.g., Riley, 1999]. Instead, they close the
system of equations by assuming that the entropy of a fluid element remains constant as

the system evolves. Thus the energy transport equation is simply,

) fe)
ot\ n n (1)

where P is the thermal pressure, n is the number density, y is the polytropic index, and v

is the bulk velocity of the plasma. Combining this with the equation for an ideal gas, P =

nKsT, leads to:

D(T )
2
Dt n )
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where K3 is the Boltzmann constant, T is the temperature of the plasma, and we have

replaced the temporal (Eulerian) and spatial derivatives with the total (Lagrangian)

derivative (D/Dt¢). Thus along any streamline,

Log(T)= G -1)Log(n)+ Log(S) 3)

where the constant, S, is the thermodynamic entropy of the plasma. If equation (3) holds
then the slope of a logarithmic plot of T versus # should yield a straight line with with a

slope equal to (y-1) and an intercept related to the entropy of the plasma.

Osherovich and colleagues [e.g., Osherovich et al., 1993a,b, 1995 Fainberg et al., 1996;
Osherovich et al., 1998, 1999] argued that equation (3) holds for single—point spacecraft
measurements of magnetic clouds in the interplanetary medium. Although strictly the
relationship holds only along a given streamline, they contend that because of the
assumed axisymmetry of their model, together with the assumption of infinite
conductivity, the entropy term must be constant throughout the magnetic cloud.
Furthermore, they reason that the entropy term cannot vary significantly during the
passage of the magnetic cloud, for otherwise there would not be a unique linear

relationship between Log(T) and Log(n) as is commonly observed.

Osherovich et al. [1993a] derived an analytic theory for the evolution self-similar,
axisymmetric, radially-expanding, magnetic flux ropes and applied the model to
magnetic clouds in the solar wind., Their solution, however, required y < 1 to produce the
observed expansions of clouds. On the other hand, Vandas et al. [1996] modeled the'
evolution of force-free objects within an ambient solar wind flow using three—

dimensional MHD simulations and showed that a good agreement could be found
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between the simulation results and Osherovich et al.’s analytic theory without the

requirement that y < | in the simulations.

Osherovich and Burlaga [1997] analyzed several magnetic clouds, as well as the sheath
region that surrounded them and the ambient solar wind. They found that the application
of equation (3) to each region yielded electron polytropic indices of 0.4-0.5 (for the
magnetic cloud), 0.7-0.8 (for the sheath region), and 1.2 (for the ambient solar'wind).

From this, they concluded that "single—fluid MHD models can approximate any one of

these states, but not all three".

Other studies, however, have disputed the polytropic interpretation of the n.— T.
relationship within magnetic clouds. Hammond et al. [1996] studied the relationship
between core electron temperature and density and found a similar negative correlation
for 5 CMEs that were observed by the Ulysses spacecraft during its in—ecliptic journey
from Earth to Jupiter. They also found that a negative correlation existed during CME -
but not cloud-like — intervals, when axisymmetry was probably not a good assumption.
They suggested that the core n.— T. profile is not the result of a polytropic relationship,
but derives from differences in the collision histories of the electrons, i.e., denser plasma

cools more quickly than less dense plasma.

Gosling [1999] has also argued against the inference that the polytropic index is less than
one and thus that single—point measurements cannot be used to infer the value of v.. He
showed that if y. < 1, then the temperature within CMEs must increase as they propagate
away from the Sun, a result that is clearly at odds with both solar observations and in situ
CME observations at different heliocentric distances. He suggested that the observed

relationship occurs primarily because of the plasma’s tendency to reach local pressure

balance.
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Skoug et al. [1999] studied a single CME observed by both ACE and Ulysses at widely
different heliocentric distances. They showed that while the slope derived from each

spacecraft individually was indeed negative, the least squares fit for the combined ACE~

Ulysses data set was positive and yielded y. = 1.4.

Using the relationship between density and temperature, derived from measurehents at
different heliocentric distances, to determine the polytropic relationship of electrons and
protons in the general solar wind appears to be on firmer ground. Gosling [1999] has
reviewed many of these studies. Here we only remark that most studies found parameters
in the ranges ¥, = 1.4 — 1.6 and y. = 1.1 - 1.6. Suffice to say, that y> 1 for both electrons
and protons in the normal solar wind. Newbury et al. [1997] found a positive correlation
between proton density and temperature in the vicinity of stream interfaces but cautioned
that care must be taken to isolate solar wind from different coronal source regions. In
particular, they presented an event for which a negative correlation was found between
density and temperature when data both preceding and following a stream interface were
plotted collectively. On the other hand, when the data were separated into two sets (an
interval preceding the interface and an interval following it), each displayed a positive
correlation. Skoug et al. [1999] also identified intervals within the ACE and Ulysses

datasets that were not associated with CMEs yet also displayed a negative correlation.

In this study, we use numerical simulations to investigate the relationship between fluid
density and temperature for a variety of perturbations, some of which have been shown
previously to mimic the propagation and evolution of CMEs through the solar wind. We
reduce the modeling to its simplest terms; we consider a single fluid, spherically
symmetric system and neglect magnetic fields. We will demonstrate that, in spite of these

simplifications, we can generate a a variety of relationships between n and T depending
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on the launch profiles. Since our fluid algorithm strictly enforces ¥ = constant (3/2 — 5/3)

throughout the simulation domain, we conclude that a departure in the slope from (y-1)

does not indicate a change in the polytropic index of the gas. We will also demonstrate
that fine—scale random perturbations in density and temperature are all that are required
to produce the types of negative n—T correlation that are often observed in magnetic

clouds. Thus we conclude that single—point measurements of density and temperature

may not be a good measure of .

2. Simulation Technique

To mimic the evolution of a CME—driven disturbance in the solar wind, we employ an
Eulerian finite difference code [Stone and Norman, 1992]. The energy transport equation
is reduced to equation (1) and the polytropic index, y=constant. For the simulations
presented here, we set y=3/2, however, selected runs were also made with y =5/3 with no
substantial differences. The code has been previously applied to modeling CME
disturbances in one and two dimensions [e.g., Gosling and Riley, 1996; Riley et al., 1997,
Gosling et al., 1998; Riley and Gosling, 1998]. Since our goal is to investigate the
relationship between n and T at fixed locations in space for a variety of perturbations, and
not to reproduce the details of CME evolution in the solar wind, we make a number of
simplifying assumptions. First, we neglect the magnetic field. Thus our simulations are
sm’cily only valid for high—-B CMEs. Second, we restrict our analysis to a spherically
éymmetn'c (one—dimensional) geometry. As such, the interactions between adjacent
parcels of plasma are probably too strong, since velocity shear transverse to the radial

direction is not permitted. A practical benefit of these assumptions is that the simulations

are computationally fast. Thus we can explore the evolution of a variety of launch
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profiles within a relatively short amount of time. Although only a handful of cases are

summarized in this report, in total, >200 launch profiles were simulated and analyzed.

The simulations consist of two parts; first an ambient solar wind is built and then a
perturbation is introduced at the inner boundary. To produce an ambient solar wind, we
specify the speed, density and temperature at the inner boundary of the simulation (30
Rsw). We enforce inflow boundary conditions at the inner boundary and outflow
boundary conditions at the outer boundary (6 AU). The simulation region is filled with
approximately correct values and allowed to reach an equilibrium flow. Values of n=128
cm™, v=702 km s, and T=10° K at the inner boundary yielded the equilibrium flow
profiles summarized in Figure 1 and match well with Ulysses observations at high
heliographic latitudes. In the present study, the particular values of the ambient wind are
largely immaterial; we could have chosen values more indicative of the slow solar wind.

This would only have had the effect of increasing the time taken to complete a particular

simulation without affecting our conclusions.

Introducing a time—dependent perturbation can, in principle, mimic the launch of a CME
through the inner boundary of the simulation. We varied: (1) the shape of the pulse
(square— and bell-shaped); (2) the duration of the pulse (10, 30, and 50 hours); (3) the
height of the pulse (x4, x10, and x30 above or below ambient values; and (4) which
parameters were perturbed (density, temperature, and or speed). In addition, in some
perturbations, the speed was linearly increased or decreased. Some of these profiles have
been previously shown to compare favorably with observed CME—driven disturbances in
the solar wind [e.g., Gosling and Riley, 1996; Riley et al., 1997; Gosling et al., 1998].
Others are probably not related to any observed event. Nevertheless, they allow us to
explore how different perturbations evolve as they propagate through the solar wind, and

in particular, how density and temperature are related at fixed locations in space.
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In addition to these large-scale perturbations, we also modeled fine-scale random
perturbations in density and temperature. We added this noise both to the ambient solar

wind flow and to the large-scale perturbation profiles.

3. Results

We have chosen seven examples from the set of simulations to support the main
conclusion of this study, namely that in spite of the fact that y=constant in the model, a
variety of relationships between density and temperature can be observed at fixed
heliocentric distances. Thus single—point spacecraft measurements of n and T cannot, in
general, be used to infer y. The first five examples consist of large—scale perturbations

(summarized in Figure 2), while the last two examples consist of fine~scale random

fluctuations in density and temperature.

The perturbation for our first case study is summarized in Figure 2a. It consists of a bell—
shaped increase in speed of 300 km s™ above the ambient speed in concert with a x4
enhancement in both density and temperature. Thus the gas pressure peaks at x16 above
background values. The perturbation lasts for SO hours. These variations approximate a
fast, dense, hot CME propagating through a slower, more tenuous, and cooler ambient
solar wind. Figure 3 shows the resulting solar wind disturbances at 55 and 194 hours
following its launch. The two pairs of vertical lines in each panel mark the boundary of
the pulse. The development and evolution of this type of disturbance is well known and
discussed elsewhere [e.g., Hundhausen and Gentry, 1969; Riley et al., 1997). Our interest
here lies in the variation of temperature and density at a fixed location in space, since this’

is how single—spacecraft measurements are made. In Figure 4 we plot temperature against
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density logarithmically at 2.5 AU. The cross marks the ambient solar wind, which, at a

particular location has a single value. The dots identify disturbed solar wind, and those '

dots with diamonds superimposed on them identify the ejecta. Inspection of Figure 3
reveals that the temporal sense of the curve: From the ambient solar wind (the cross), the
sheath region of the disturbance (dots that move from the lower left to the top of the
Figure then to the upper right) is sampled. Next, the ejecta (diamonds that migrate from
the upper right to the lower left then curl under) is encountered and finally ambieﬁt solar
wind flow is again sampled. The solid straight line is a least-squares fit to the ejecta
portion and has a numerical value of 0.643. If this slope were indicative of the polytropic

index of the gas, we would infer a value, y=1.643. This is similar — but not identical — to

the model value of 1.5.

The perturbation used for our second example is summarized in Figure 2b. Both the
speed and temperature are held constant while the density (and hence pressure) is
increased smoothly by a factor of 4 and then returned to its equilibrium value over a
period of 30 hours. This type of pulse was used to successfully model a new class of
CMEs observed at high heliographic latitudes by the Ulysses spacecraft [Gosling et al.,
1994]. Figure 5 summarizes the plasma density and temperature variations at 1.5 and 35
AU. The ejecta and sheath regions are now much more symmetric with respect to the
temporal midpoint of the ejecta (where the temperature is a minimum). The least—squares
fit to the results of Figure 5a lead to a slope of —0.725, whereas the fit to Figure 5b leads

to a slope of 1.859. The sheath region in both panels (dots) maintains a slope of ~0.5.

For our third example, we consider a perturbation in speed only. The initial profile of the

pulse is shown in Figure 2c. The speed is decreased by 300 km s™' over an interval of 30-

hours and then returned to its initial value while maintaining constant density and

temperature. Since density and temperature do not change, thermodynamic entropy also

10

——
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remains constant. Gosling and Riley [1996] have discussed this type of pulse in relation
to the acceleration of CMEs in the high-speed solar wind. In Figure 6 we compare '
density and temperature at 1.5 and 3.5 AU from the Sun. The least-squares fit gives
+0.600 and -0.378, respectively. The sheath region, at both locations, gives a slope of
~0.5. The straight-line portion of the sheath region extending from the ambient solar
wind point (cross) to the lower left corner of each panel occurs in the region trailing the
CME and corresponds to a rarefaction (see Figure 3 of Gosling and Riley [71996]).
Figures 6a and 6b suggest that the sense of the inferred slope changes with heliocentric
distance. Inspection of plots at other heliocentric distances (not shown) confirms that the
ejecta profile evolves from a predominantly positive slope near the Sun to a

predominantly negative slope at larger heliocentric distances.

The perturbation for our fourth example is shown in Figure 2d. This profile consists of
smooth decrease in density (by a factor of 4) with a corresponding increase in
temperature — so as to maintain constant pressure — over a period of 10 hours while
maintaining constant speed. Figure 7 displays the relationship between temperature and
density at 3.5 AU. The least—squares fit to the ejecta portion of the data gives a slope of

-1.016. Again, the slope of the sheath region equals 1/2.

As our final example, we consider a perturbation in density and temperature, such that the
entropy of gas remains constant. From equation (3) we have that the thermodynamic
entropy, S = T/n™", which for ¥=3/2 becomes S = T/n'?. Thus if the pulse consists of a
peak density enhancement of x4, then it must be accompanied by a corresponding peak
temperature increase of X2 to maintain constant entropy. Thus the peak pressure is X6
above ambient values. The resulting relationship between density and temperature at 35
AU is shown in Figure 8. The least squares fit to the ejecta gives a slope of 0.490. Note

that although this perturbation is qualitatively similar to our second example (compare

13
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Figures 2b and 2e), the resulting temperature-density relationship is significantly

different (compare Figures 5 and 8).

4. Summary and Discussion

In this report we have shown that one—dimensional, hydrodynamic simulations of the
evolution of CME—driven disturbances in the solar wind are capable of producing a
variety of temperature—density relationships. Since we strictly impose a polytropic
relationship with Y = constant throughout our simulations, we conclude that a negative

correlation between density and temperature cannot be used to infer the value of y at a

fixed location in space.

Our examples suggest that the negative correlation derives from variations in the
thermodynamic entropy of the plasma. Our fifth example (Figures 2e and 8) shows that
when the entropy of the perturbed gas remains the same as the ambient solar wind, the
temperature—density relationship is a fair indicator of the polytropic index of the gas. In
apparent contraction, however, in our third example (Figures 2c and 6), the pulse appears
to maintain constant entropy (since it contains no variations in density or temperature),
and yet does not yield a slope of 0.5. The concept of entropy we have been using,
however, is strictly only applicable to individual parcels of plasma as they propagate
away from the Sun and expand. A more realistic definition of entropy at a particular
location in space, such as the inner boundary of our simulations, must take into account
the speed of the plasma. Thus we suggest that entropy flux (Sxv) must be conserved for

temperature—density relationships to be able to provide meaningful values of the

polytropic index.

12
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Our simulations support the idea suggested by Gosling [1999] that the negative
correlation is the resuit of local pressure imbalances. However, other causes may be
responsible. It is possible, for example, that the observed negative correlation derives
from kinetic effects of the electrons, such as the idea proposed by Hammond et al.

[1996], that are not included in the fluid simulations.

In addition to the results presented here; a number of interesting temperature—density
relationships were found. One relatively common type consisted of a circular pattern in
Log(T)-Log(n) space. Such a pattern suggests that within the ejecta, temperature and
density go through phases of being positively correlated, uncorrelated, and negatively
correlated. We are not aware of any corroborative observations of such variations.
However, if such variations turn out to have observational counterparts, then plots of

Log(T) versus Log(n) may provide a useful technique for identifying CME intervals

within in situ data sets.

In closing, we reiterate that our simulations demonstrate that a negative correlation
between density and temperature can exist for a variety of launch profiles, in spite of the
" fact that we strictly impose y=constant in our model. Moreover, we suggest that the
observed relationships are more indicative of entropy variations. In contrast to the
conclusions reached by Osherovich and Bulaga [1997], we have shown that single—fluid
hydrodynamic and MHD models can reproduce the types of observed temperature—
density variations in magnetic clouds, sheath regions, and ambient solar wind, without

resorting to non—physical arguments requiring y<1.

13
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Figure Captions

Figure 1. Solar wind equilibrium solution. Speed (v), number density (n) and gas pressure

(P) are plotted against heliocentric distance (R).

Figure 2. Four perturbations to the innmer boundary of the equilibrium solution
summarized in Figure 1. Speed (v), number density (), and gas pressure (P) are 'plotted
against time (f). (a) Combined bell-shaped density, temperature, and speed enhancement
lasting 50 hours. (b) Bell-shaped density enhancement lasting 30 hours. (¢) Box—shaped
speed decrease lasting 30 hours. (d) Bell-shaped density decrease and corresponding
temperature enhancement (to maintain constant pressure) lasting 10 hours. (e) Bell-

shaped density enhancement and corresponding temperature enhancement (to maintain

constant entropy) lasting 10 hours.

Figure 3. Simulated speed (v), number density (n), and gas pressure (P) versus
heliocentric distance (R) at 55 and 194 hours following the launch of the pulse

summarized in Figure 2a. The boundary of the pulse is marked by the two pairs of

vertical lines in each panel.

Figure 4. Logarithmic plot of Temperature (T) versus number density (n) at R=2.5 AU
for the pulse profile summarized in Figure 2a. A cross marks the ambient solar wind.

Diamonds (dots) indicate the ejecta (sheath) region. The straight line is a least—squares fit

to the ejecta interval.

Figure 5. Same parameters displayed as in Figure 4 for the pulse profile summarized in

Figure 2b. The top panel shows results at 1.5 AU and the bottom panel shows results at

3.5 AU.
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Figure 6. Same parameters displayed as in Figure 4 for the pulse profile summarized in

Figure 2c. The top panel shows results at 1.5 AU and the bottom panel shows results at

3.5 AU.

Figure 7. Same parameters displayed as in Figure 4 for the puise profile summarized in

Figure 2d at R=3.5 AU.

Figure 8. Same parameters displayed as in Figure 4 for the pulse profile summarized in

Figure 2e at R=3.5 AU.
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